myPresto 5.0

- pdbcheck -

USER MANUAL

2018/1/12

Copyright (C) 2006-2018 Next Generation Natural Product Chemistry (N²PC)

本ドキュメントについて

本ドキュメントは、「*myPresto* **5.0** USER MANUAL」の別冊です。コピーライト、プログラム使用許諾条件、著者および引用文献については、「*myPresto* **5.0** USER MANUAL」の記述に準じます。

謝辞

本ソフトウェアの研究開発は、国立研究開発法人日本医療研究開発機構(AMED)の援助に よって行われました。ここに感謝の意を記します。

本ソフトウェアは、故・京極好正博士の始められた研究の中で開発されました。

目次

1.	PDB チェックツールの概要とインストール	.4
	1.1 PDB チェックツールの概要	4
	1.2 インストール	6
2.	pdbcheck の実行	.8
	2.1 実行方法	8
	2.2 入力データの作成	8
	2.2.1 コントロールファイル	8
3.	実行例1	0
	3.1 Sample-1: alternate location indicator の検出と補正	.0
	3.2 Sample-2: 主鎖原子欠損の検出と補正1	3
	3.3 Sample-3:末端残基の検出と補正1	.6
	3.4 Sample-4: SSBOND の検出と補正	23
	3.5 Sample-5:近接原子の検出と補正	26
	3.6 Sample-6: 直行する二面角の検出と補正	29
	3.7 Sample-7: HETATM 行の無効化	32
	3.8 Sample-8: チェイン構造の保持	39
	3.9 Sample-9: REMARK 行の出力	9
	3.10 Sample-10: CYSS の出力	62

1. PDB チェックツールの概要とインストール

1.1 PDB チェックツールの概要

pdbcheck は、タンパク質の PDB を入力とし、下記の表のタンパク質の情報を解析し、 検出した内容を標準出力に出力します。また、加工オプションを指定することで、入力 PDB データを加工し、PDB ファイルとして出力します。

項番	機能概要	加工	概要		
		オプション			
1	alternate location	-alt	・検出内容		
	indicator の検出と		残基内の同名の原子を検出します。		
	加工		・加工内容		
			同名原子のうち、先頭の原子を有効とし、2番		
			目以降の原子を削除します。		
2	主鎖原子の欠損の	-bb	・検出内容		
	検出と加工		アミノ酸残基の主鎖原子(N,CA,C,O)が欠損し		
			ている残基を検出します。		
			・加工内容		
			主鎖原子が欠損している残基を削除します。		
3	末端残基の検出と	-cap	・検出内容		
	加工		アミノ酸残基の2残基間の主鎖原子(C-N)の距		
			離が 2.0Åを超えている残基(末端残基)を検出		
			します。		
			・加工内容		
			末端残基間でチェインを分割します。		
			全チェインについて、N 末端は NTER 構造、		
			C 末端は CTER 構造に変換します。		
4	SS-BOND、	-88	・検出内容		
	CYS-(CYM)の検		全チェイン間の2つの CYS 残基の硫黄間の距		
	出と加工		離が 2.0 Å以内であるかを検出します。		
			・加工内容		
			上記の場合、SSBOND 行を出力します。 また、		
			残基内に HS 原子が存在する場合は HS 原子を		
			削除します。		
			CYS-(CYM)を検出した場合、CYS 残基名を		
			CYM として出力します。		

5	近接原子の検出と	-hyd	・検出内容	
	加工		水素原子に対し、従属する重原子以外の原子が	
			距離 1.0Å以内に存在しているかを検出しま	
			す。	
			・加工内容	
			水素と同残基の最も水素に近い重原子の bond	
			距離を 0.5 倍した位置に水素を移動します。	
6	直行する二面角の	-dih	・検出内容	
	検出と加工		アミノ酸残基の主鎖原子(N,CA,C,N,CA,)の	
			二面角が直行する要因が無いかを検出します。	
			・加工内容	
			上記の場合、主鎖原子の座標を±0.1Åの範囲	
			でずらします。	
7	HETATM の無効	-disableHet	入力 PDB データの HETATM 行を読込みませ	
	化		ん。また出力 PDB にも出力しません。	
8	入力 PDB の TER	-keepTer	入力 PDB の TER を保持します。(入力 PDB の	
	の保持		TER/END 行以外でのチェイン分割をしませ	
			(\mathcal{K}_{\circ})	
9	REMARK の出力	-remark	入力 PDB データの REMAKR 行(REM 行)を出	
			力 PDB に出力します。	
10	オリジナルの SS	-as	オリジナルの SSBOND 行を復元します。	
	結合情報の復元			
11	欠損原子付加と余	-mod	アミノ酸の余剰原子を削除し、欠損原子を追加し	
	剰原子削除		ます。	
12	OH 基の回転	-rot	水素結合を多く発生させるように OH 基を回転	
			させます。	
13	残基イオン系置換	-mut	水素結合を多く発生させるように残基を置換し	
			ます。	
14	金属配位残基変換	-cmp	金属に配位する同種の残基種別に残基を変換し	
			ます。	

1.2 インストール

- (1) インストールに必要な環境
 - ・UNIX (Linux) 環境 : pdbcheck の実行環境です。
 - ・Fortran90 コンパイラ:pdbcheck の構築に使用します。

(GNU FORTRAN コンパイラ(gfortran)、または、Intel FORTRAN コンパイラ(ifort))

(2) インストール方法

pdbcheckYYMMDD.tar.gzを書き込み可能権限のあるディレクトリ(例えば、ホームディレクトリ)に配置して、次のコマンドを実行します。(YYMMDDは年月日の数字です。)

% tar -xzvf pdbcheckYYMMDD.tar.gz	
次のコマンドを実行することにより、プログラムをインストールします。	
% cd pdbcheckYYMMDD	

次のコマンドは、どちらか一方を実行します。

- % bin/install.sh (GNU のコンパイラを使用する場合)
- % bin/install.sh intel (Intelのコンパイラを使用する場合)

インストール後のディレクトリ構成:

pdbcheckYYMMDD/
bin/
install.sh
clean_binary.sh
check binary.sh
test pdbcheck.sh
└ └── pdbcheck (install.sh 実行後に出現)
doc/
sample/
sample1/
sample2/
sample3/
sample4/
sample5/
sample6/
sample7/
sample8/
sample9/
$\sim \frac{1}{1}$ $\sim \frac{1}{1}$ sample 10/
src

(3) テストプログラムの実行

次のコマンドで、テストプログラムを実行します。

% bin/test_pdbcheck.sh

このテストプログラムの出力先は、pdbcheckYYMDD/test_pdbcheck_sample/です。こ のテストプログラムを実行することにより、pdbcheck が正常に動作することを確認す ることができます。

※SS 結合している CYS 残基を、残基名 CYSS に加工し出力する場合は、 src/Makefile(gfortran の場合), src/Makefile.intel(ifort 場合)を編集し、コンパイルフ ラグに「-D ENABLE_RENAME_CYSS」を指定してから、make コマンドを実行す る必要があります。詳細は、「3.10 Sample-10: CYSS の出力」を参照してください。

(修正前) FFLAGS = -warn (修正後) FFLAGS = -warn **-D ENABLE_RENAME_CYSS**

2. pdbcheck の実行

2.1 実行方法

pdbcheck タンパク質の入力 PDB ファイル名、出力 PDB ファイル名、加工オプション を入力とし、指定された入力 PDB データに対し、加工オプションで指定されたタンパク 質の情報を加工し、結果を出力 PDB ファイル名に出力します。

これらの入力情報は、通常コントロールファイルに指定します。pdbcheckは、標準入 力よりコントロールファイルを読み込んで動作します。

\$ (path)/pdbcheck < control_file</pre>

例えば、pdbchcek/work_dir/の下で作業をする場合には、work_dir/の下から bin/への相対 パスを(path)の部分に入れて、次のコマンドになります。

\$../bin/**pdbcheck** < control_file

2.2 入力データの作成

2.2.1 コントロールファイル

コントロールファイルは、以下のように記述します。

- 1 行目:入力 PDB ファイル名
- 2行目:出力 PDB ファイル名
- 3行目以降:加工オプション(省略可能)

4INS.pdb		
result.pdb		
-alt		
-bb		
-cap		
-88		

pdbcheck のコントロールファイルの例

(1) 入力 PDB ファイル名

入力 PDB ファイル名には、チェック・加工対象とする PDB ファイルのパスを指定 します。パスは、相対パスでも全体パスでもかまいません。

入力 PDB ファイル名は必ず指定しなければなりません。

入力 PDB ファイル名に、読み込み不可能なパスを指定した場合、下記のメッセージを 出力し pdbcheck ツールは終了します。

ERROR: can not read file 入力 PDB ファイル名文字列

(2) 出力 PDB ファイル名

出力 PDB ファイル名には、pdbcheck によって PDB 情報が加工された PDB データ を出力するパスを指定します。パスは、相対パスでも絶対パスでもかまいません。 出力 PDB ファイル名は必ず指定しなければなりません。

出力 PDB ファイル名に、書き込みできないパスを指定した場合、下記のメッセージを 出力し、pdbcheck ツールは終了します。

ERROR: can not write file 出力 PDB ファイル名文字列

(3) 加工オプション

pdbcheck は、入力 PDB データに対し、加工オプションで指定された加工を施し、出 カ PDB ファイルとして出力します。加工オプションは、複数指定することも可能です。 また、省略することも可能です。加工オプションの詳細については、「1.1 PDB チェッ クツールの概要」を参照してください。

不正なオプションを指定した場合、下記のメッセージを出力し、pdbcheck は終了し ます。また、空行の場合も下記メッセージが出力されます。

ERROR: invalid option: 不正なオプション文字列

加工オプションにチェインと残基範囲を指定することで、特定の残基のみを加工する ことができます。 加工オプション行の後ろに加工範囲の先頭チェイン、最終チェイン、先頭残基番号、 最終残基番号を指定することで、加工対象を指定します。 複数記述した場合は、和集合のチェインと残基が加工対象となります。 指定しない場合は、全チェインと全残基が加工対象となります。

4INS. pdb	
result.pdb	
-alt 1 1 1 100	1番チェインの1~100番残基を"-alt"対象に指定
-bb	全系の主鎖残基をチェックし、欠損があれば削除
-cap 2 2 1 100	2番チェインの1~100番残基の末端を保護する残基を追加指定

なお、オプションで指定するチェイン番号、残基番号は PDB 上の表記ではなく、先頭から昇順に振りなおした番号となります。

アミノ酸の解析機能を使用する際には、実行ディレクトリに"C99_aa.tpl"ファイルが 必要です。ファイルがない場合はアミノ酸の解析機能はスキップされます。

3. 実行例

本章では、各機能の実行例を示します。本章で使用している入力 PDB ファイルは、サ ンプルに付属しています。入力 PDB ファイルの詳細については、サンプルファイルを参 照してください。

3.1 Sample-1: alternate location indicator の検出と補正

本節では、alternate location indicator の検出と補正を行う例を示します。入力 PDB ファイルには、alternate location indicator が存在します。pdbcheck ツールは alternate location indicator 検出し、メッセージを出力します。また、加工オプション(-alt)を指定 し、2つ目以降の重複した原子を削除します。

■実行方法

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- 2 pdbcheckのコントロールファイルを用意してください。このとき、オプションとして「-alt」を指定します。以下にコントロールファイルの例を示します。

/sample/sample1/pdbcheck_alt.pdb	
result_alt.pdb	
-alt	

コントロールファイルの例(-alt)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。
 % (path)/pdbcheck < コントロールファイル名
 例、pdbcheck/work_dir がカレントディレクトリの場合は、次のようになります。
 % ../bin/pdbcheck < コントロールファイル名

■実行例

標準出力

標準出力のメッセージから、GLY 残基(ID=4)の4つの原子(CG, CD, OE1, NE2)について、原子が重複していたことが分かります(※1)。また、同原子について2つ目以降の同名の原子が削除されたことが分かります(※2)。

PDB CHECK TOOL v1.1 2012. Sep. 14
INFORMATION INPUT
1) INPUT FILE
.../sample/sample1/pdbcheck_alt.pdb
2) OUTPUT FILE

result_alt.pdb

SPECIFIED OPTION

 -alt

INFORMATION> DIVISION OF CHAINS.

CHAIN NAME RESIDUE NAME RESIDUE ID REASON (EXCEPT TER AND CHAIN ID)

② 出力 PDB ファイル

以下に、加工前入力 PDB ファイル(pdbcheck_alt.pdb)と、加工後の出力 PDB ファ イル(result_alt.pdb)を Rasmol で表示した例を示します。Rasmol の colours オプショ ンで「alt」を選び、alternate location indicator が緑と水色で表示されるようにして います。

図 3.1-(1) alternate location indicator 補正例

- ※1…座標が複数ある原子が、黄色の stick と、緑色の stick 箇所で表示されています。 青色の stick は、座標が1つのみの原子で構成されています。
- ※2…加工後は、複数ある座標のうち、2番目以降の座標が削除されたため、全て青 色の stick で構成されています。

3.2 Sample-2: 主鎖原子欠損の検出と補正

本節では、主鎖原子欠損残基の検出と補正を行う例を示します。入力 PDB ファイルに は、主鎖原子(C)が欠損した VAL 残基が存在します。pdbcheck ツールは主鎖原子が欠損 した残基を検出し、メッセージを出力します。また、加工オプション(-bb)を指定し、主 鎖原子が欠損した VAL 残基を削除します。

■実行方法

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- 2 pdbcheckのコントロールファイルを用意してください。このとき、オプションとして「-bb」を指定します。以下にコントロールファイルの例を示します。

../sample/sample2/pdbcheck_bb.pdb result_bb.pdb -bb

コントロールファイルの例(-bb)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名	(pdbcheck にパスが通っている場合)
もしくは、	
% (path)/pdbcheck < コントロールファイル名	, 1

■実行例

標準出力

標準出力のメッセージから、VAL 残基(ID=3)に C 原子が欠損していることが分かり ます(※1)。また、VAL 残基(ID=3)が削除されたことが分かります(※2)。

PDB CHECK TOOL v1. 1 2012. Sep. 14

INFORMATION INPUT

- 1) INPUT FILE
 - $.\,.\,/samp\,l\,e/samp\,l\,e2/pdbcheck_bb.\,pdb$
- 2) OUTPUT FILE

result_bb.pdb

3) SPECIFIED OPTION

-bb

INFORMATION> DIVISION OF CHAINS.

CHAIN NAME RESIDUE NAME RESIDUE ID REASON (EXCEPT TER AND CHAIN ID)

INFORMATION> EXIST ALTERNATE LOCATION INDICATOR
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LACKED MAIN CHAIN × 1
RESIDUE NAME RESIDUE ID ATOM NAME
VAL 3 C
INFORMATION> DELETE INVALID RESIDUE X2
RESIDUE NAME RESIDUE ID
VAL 3
INFORMATION> TERMINAL RESIDUE
RESIDUE NAME RESIDUE ID DISTANCE
INFORMATION> SSBOND CANDIDATES
INFORMATION> CYS-(CYM) CANDIDATES
CHAIN ID RESIDUE NAME RESID ID
INFORMATION> EXIST NEAR ATOM
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LINEAR TORSION ATOM
RESIDUE ID ATOM NAME
INFORMATION> OUTPUT
OUTPUT FILE
result_bb.pdb

② 出力 PDB ファイル(一部)

以下に、入力 PDB ファイル(加工前)と、加工後の出力 PDB ファイル(result_bb.pdb) を Rasmol で表示した例を示します。カラーは CPK で表示していますが、分かりやすく するため、側鎖は紫で表示しています。

図 3.2.(1) 主鎖原子欠損残基補正例

- ※1…VAL 残基(ID=3)のN 原子(水色の球)とILE 残基(ID=2)のC 原子と結合しています。
- ※2…VAL 残基の O 原子。VAL 残基に C 原子が存在しない主鎖原子欠損残基の状態の ため、独立して表示されています。
- ※3…ILE 残基の C 原子。主鎖原子欠損残基である VAL 残基が削除されたため、他の残 基の N 原子と結合していません。

3.3 Sample-3:末端残基の検出と補正

本節では、末端残基の検出と補正を行う例を示します。入力 PDB ファイルの、ILE 残 基(ID=2)の C 原子と GLU 残基(ID=4)の N 原子の距離が 2.0 Åより離れています (pdbcheck はこれを末端残基とみなします)。pdbcheck ツールは末端残基を検出し、メッ セージを出力します。また、加工オプション(-cap)を指定することで、末端残基間でチェ インを分割し、さらに全チェインの N 末端を NTER 構造、C 末端を CTER 構造にしま す。ただし、加工オプション(-keepTer)も指定している場合は、末端残基間でのチェイン の分割はせずに、N 末端を NTER 構造、C 末端を CTER 構造にします。以下に、実施す る検出・加工内容と2つのオプションの指定の有無について示します。

実施する検出・加工内容	指定>	オプション
	-cap オプション	-keepTer オプション
末端残基の加工は行わず、検出のみ行う	指定しない	どちらでも可
入力 PDB のチェインの構造は保ったまま、各チェイ	指定する	指定する
ンの両末端について NTER/CTER 構造化加工する		
末端残基間でチェイン分割し、その上で、各チェイ	指定する	指定しない
ンの両末端について NTER/CTER 構造化加工する		

■実行方法(チェイン分割し、末端の構造を加工する)

初めに、末端残基間でチェイン分割を行い、その上で各チェインのN末端、C末端の構造を加工する方法を示します。

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- 2 pdbcheckのコントロールファイルを用意してください。このとき、オプションとして「-cap」を指定します。以下にコントロールファイルの例を示します。

/sample/sample3/pdbcheck_cap.pdb
result_cap01.pdb
-сар

コントロールファイルの例(-cap)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名	(pdbcheck にパスが通っている場合)
もしくは、	
% (path)/pdbcheck < コントロールファイル名	

■実行例(チェイン分割し、末端の構造を加工する)

① 標準出力 (一部)

標準出力のメッセージから、ILE 残基(ID=2)の C 原子と GLN 残基(ID=5)の N 原子の間の距離が 2.0Åを超えていることが分かります(※1)。・cap 指定し、かつ・keepTerを指定していない時は、この残基間でチェインが分割されます。また、チェイン分割後の状態での各チェインの N 末端、C 末端に ACE、NME が配置されたことが分かります(※2)。

PDB CHECK TOOL v1.1 2012. Sep. 14
INFORMATION INPUT
1) INPUT FILE
/sample/sample3/pdbcheck_cap.pdb
2) OUTPUT FILE
result_cap01.pdb
3) SPECIFIED OPTION
-cap
INFORMATION> DIVISION OF CHAINS.
CHAIN NAME RESIDUE NAME RESIDUE ID REASON (EXCEPT TER AND CHAIN ID)
INFORMATION> EXIST ALTERNATE LOCATION INDICATOR
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LACKED MAIN CHAIN
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> TERMINAL RESIDUE × 1
RESIDUE NAME RESIDUE ID DISTANCE
ILE GLN 2 5 3.908
INFORMATION> CAPED TERMINAL RESIDUE
RESIDUE NAME RESIDUE ID CAP
GLY 1 ACE
ILE 2 NME
GLN 5 ACE
CYS 6 NME
INFORMATION> SSBOND CANDIDATES

INFORMATION> CYS-(CYM) CANDIDATES CHAIN ID RESIDUE NAME RESID ID

INFORMATION> EXIST NEAR ATOM RESIDUE NAME RESIDUE ID ATOM NAME

INFORMATION> LINEAR TORSION ATOM RESIDUE ID ATOM NAME

INFORMATION> OUTPUT OUTPUT FILE result_cap01.pdb 出力 PDB ファイル(一部)

以下に、入力 PDB ファイル(加工前)と、加工後の出力 PDB ファイルを Rasmol で表示した例を示します。

図 3.3-(1) 末端残基補正例(チェイン分割あり)

- ※1…加工前の図では1つのチェインを灰色の stick で表示されており、全体で1チェインであることが分かります。また、水色の球はN原子、灰色の球はC原子または CA原子。赤い球はO原子。紫色の球は側鎖の原子を表しています。
- ※2…枠内の点線で結ばれた原子は、ILE 残基の C 原子と GLN 残基の N 原子をあらわ しています。この2つの残基(原子)は、PDB ファイル上では、同じチェインの隣 り合った残基となっていますが、距離が離れている(3.91Å)ため、結合状態とは表 示されていません。
- ※3…加工後は、チェインAを赤い stick、チェインBを青い stick で表示しており、加 工処理によってチェインが分割され、2つのチェインとなっていることが分かり ます。
- ※4…各チェインのN末端には、ACE(C原子、CA原子)が配置されています(緑の球)。 ※5…各チェインのC末端には、NME(N原子)が配置されています(黄色の球)。

■実行方法(チェイン分割せず、末端の構造を加工する) 次に、末端残基間でチェイン分割せず、各チェインのN末端、C末端の構造を加工する 方法を示します。

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- 2 pdbcheckのコントロールファイルを用意してください。このとき、オプションとして「-cap」と「-keepTer」を指定します。以下にコントロールファイルの例を示します。

 ../sample/sample3/pdbcheck_cap.pdb
 .../sample/sample3/pdbcheck_cap.pdb

result_cap02.pdb	
-cap	
-keepTer	

コントロールファイルの例(-cap と-keepTer)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名 (pdbcheck にパスが通っている場合) もしくは、 % (path)/pdbcheck < コントロールファイル名</pre>

■実行例(チェイン分割せず、末端の構造を加工する)

① 標準出力

チェイン分割しないときと同様、標準出力のメッセージから、ILE 残基(ID=2)の C 原子とGLN残基(ID=5)のN原子の間の距離が2.0Åを超えていることが分かります(※ 1)。ですが、チェイン分割しないときとは違い、入力 PDB でのチェインの N 末端、 C 末端にのみ ACE、NME が配置されたことが分かります(※2)。

PDB CHECK TOOL v1.1 2012. Sep. 14

INFORMATION INPUT

- 1) INPUT FILE
 - $\dots/\text{sample/sample3/pdbcheck_cap.pdb}$
- 2) OUTPUT FILE

result_cap02.pdb

3) SPECIFIED OPTION

-cap

-keepTer

INFORMATION> EXIST ALTERNATE LOCATION INDICATOR

RESIDUE NAME RESIDUE ID ATOM NAME

INFORMATION> LACKED MAIN CHAIN	
RESIDUE NAME RESIDUE ID ATOM NAME	
INFORMATION> TERMINAL RESIDUE	× 1
RESIDUE NAME RESIDUE ID DISTANCE	
ILE GLN 2 5 3.908	
INFORMATION> CAPED TERMINAL RESIDUE	※ 2
RESIDUE NAME RESIDUE ID CAP	
GLY 1 ACE	
CYS 6 NME	
INFORMATION> CYS-(CYM) CANDIDATES CHAIN ID RESIDUE NAME RESID ID	
INFORMATION> EXIST NEAR ATOM	
RESIDUE NAME RESIDUE ID ATOM NAME	
INFORMATION> LINEAR TORSION ATOM	
RESIDUE ID ATOM NAME	
INFORMATION> OUTPUT	
OUTPUT FILE	
result_cap02.pdb	

出力 PDB ファイル(一部)

以下に、入力 PDB ファイル(加工前)と、加工後の出力 PDB ファイルを Rasmol で表示した例を示します。

図 3.3-(2) 末端残基補正例(チェイン分割なし)

- ※1…加工前の図では1つのチェインを灰色の stick で表示されており、全体で1チェインであることが分かります。また、水色の球はN原子、灰色の球はC原子または CA原子。赤い球はO原子。紫色の球は側鎖の原子を表しています。
- ※2…枠内の点線で結ばれた原子は、ILE 残基の C 原子と GLN 残基の N 原子をあらわ しています。この2つの残基(原子)は、PDB ファイル上では、同じチェインの隣 り合った残基となっていますが、距離が離れている(3.91Å)ため、結合状態とは表 示されていません。
- ※3…加工後も、1つのチェインを灰色の stick で表示しており、全体で1チェインであることが分かります。
- ※4…チェインのN末端には、ACE(C原子、CA原子)が配置されています(緑の球)。
- ※5…チェインのC末端には、NME(N原子)が配置されています(黄色の球)。
- ※6…末端残基間にはACE/NME 残基が追加されていないことが分かります。

3.4 Sample-4:SSBONDの検出と補正

本節では、SSBOND の検出と補正を行う例を示します。入力 PDB ファイルの、残基 ID(6)の SG 原子と残基 ID(11)の SG 原子の距離が 2.0 Å以内で、SS 結合状態となってい ますが、入力 PDB ファイルには SSBOND 行は記述されていません。pdbcheck ツール は SSBOND を検出し、メッセージを出力します。また、加工オプション(-ss)を指定する ことで、出力 PDB ファイルに SSBOND 行を出力します。

■実行方法

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- 2 pdbcheckのコントロールファイルを用意してください。このとき、オプションとして「-ss」を指定します。以下にコントロールファイルの例を示します。

/sample/sample4/pdbcheck_ss.pdb	
result_ss.pdb	
-88	

コントロールファイルの例(-ss)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名	(pdbcheck にパスが通っている場合)
もしくは、	
% (path)/pdbcheck < コントロールファイル名	

■実行例

① 標準出力 (一部)

標準出力のメッセージから、チェイン A の CYS 残基(残基 ID=6)と CYS 残基(残基 ID=11)間で SS 結合していることが分かります(※1)。また、出力 PDB ファイルに SSBOND 行が追加されることが分かります(※2)。

PDB CHECK TOOL v1.1 2012. Sep. 14 INFORMATION INPUT 1) INPUT FILE .../sample/sample4/pdbcheck_ss.pdb 2) OUTPUT FILE result_ss.pdb 3) SPECIFIED OPTION -ss INFORMATION> DIVISION OF CHAINS.

CHAIN NAME RESIDUE NAME RESIDUE ID REASON (EXCEPT TER AND CHAIN ID)
INFORMATION> EXIST ALTERNATE LOCATION INDICATOR
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LACKED MAIN CHAIN
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> TERMINAL RESIDUE
RESIDUE NAME RESIDUE ID DISTANCE
* 1
INFORMATION> SSBOND CANDIDATES
SSBOND 1 CYS A 6 CYS A 11
* 2
INFORMATION> APPEND SSBOND LINE
SSBOND 1 CYS A 6 CYS A 11
INFORMATION> CYS-(CYM) CANDIDATES
CHAIN ID RESIDUE NAME RESID ID
INFORMATION> EXIST NEAR ATOM
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LINEAR TORSION ATOM
RESIDUE ID ATOM NAME
INFORMATION> OUTPUT
OUTPUT FILE
result_ss.pdb

※PDB ファイルの出力時に、チェイン ID、残基 ID を振りなおすため、標準出力に表示されたチェイン ID や残基 ID と異なる場合があることに注意してください。標準出力に表示されたチェイン ID や残基 ID は入力 PDB ファイルに記述されていた ID です。

② 出力 PDB ファイル(一部)

出力 PDB の先頭に SSBOND 行が出力されています。

SSBOND	1 0	YS A	3	C	YSA 8		
ATOM	1	N	GLU A	\ 1	-7. 043	13.019	12. 935
(途中省	1略)						
ATOM	18	NE2	GLN A	A 2	-14. 943	11.030	13. 351
ATOM	19	Ν	CYS /	A 3	-10. 033	9.815	12. 695
ATOM	20	CA	CYS /	A 3	-10. 050	8. 518	12.065
ATOM	21	С	CYS A	A 3	-9. 105	7. 520	12. 667
ATOM	22	0	CYS A	۸ 3	-9. 395	6. 288	12. 666
ATOM	23	CB	CYS A	۸ 3	-9. 660	8. 673	10. 559
ATOM	24	SG	CYS A	А З	-10. 925	9. 459	9. 579
ATOM	25	Ν	CYS A	4	-8. 018	7.992	13. 171
(途中省	(略)						
ATOM	51	CD1	ILE A	A 7	-16. 702	3. 722	15.005
ATOM	52	Ν	CYS A	8	-14. 080	6. 685	11.767
ATOM	53	CA	CYS A	8	-14. 665	7.679	10. 880
ATOM	54	С	CYS /	8	-15. 301	6. 881	9. 766
ATOM	55	0	CYS /	8	-14. 962	5. 692	9. 528
ATOM	56	CB	CYS A	8	-13. 695	8. 702	10. 417
ATOM	57	SG	CYS /	A 8	-12. 275	8. 119	9. 385
ATOM	58	Ν	SER A	۹ ۹	-16. 233	7. 557	9. 095
(途中省	(略)						
ATOM	63	OG	SER A	۹ ۹	-18. 869	8. 543	7. 881
TER	64		SER A	A 9			

3.5 Sample-5:近接原子の検出と補正

本節では、近接原子の検出と補正を行う例を示します。入力 PDB ファイルでは、CYS 残基(ID=7)の HA 原子と CYS 残基(ID=6)の O 原子の距離が 1.0 Å以内に配置されていま す。pdbcheck ツールはこれを検出し、メッセージを出力します。また、加工オプション (・hyd)を指定することで、HA 原子と、HA 原子と同一残基内で HA 原子と最も近い原子 (CA)との距離を半分の位置に HA 原子の座標をずらします。

■実行方法

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- 2 pdbcheckのコントロールファイルを用意してください。このとき、オプションとして「-hyd」を指定します。以下にコントロールファイルの例を示します。

/sample/sample5/pdbcheck_hyd.pdb	
result_hyd.pdb	
-hyd	

コントロールファイルの例(-hyd)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名	(pdbcheck にパスが通っている場合)
もしくは、	
% (path)/pdbcheck < コントロールファイル名	

■実行例

① 標準出力 (一部)

標準出力のメッセージから、CYS 残基(7)の HA 原子と CYS 残基(6)の O 原子の距離 が 2.0 Å以内に配置されていることがわかります(※1)。また、CYS 残基(7)の HA 原子 の座標が加工されることが分かります(※2)。

PDB CHECK TOOL v1.1 2012. Sep. 14

INFORMATION INPUT

- 1) INPUT FILE
 - $\dots / sample / sample 5 / pdbcheck_hyd. pdb$
- 2) OUTPUT FILE

result_hyd.pdb

3) SPECIFIED OPTION

-hyd

WARNING: chain id is empty. chain id is assigned automatically.

INFORMATION> DIVISION OF CHAINS.
CHAIN NAME RESIDUE NAME RESIDUE ID REASON(EXCEPT TER AND CHAIN ID)
INFORMATION> EXIST ALTERNATE LOCATION INDICATOR
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LACKED MAIN CHAIN
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> TERMINAL RESIDUE
RESIDUE NAME RESIDUE ID DISTANCE
INFORMATION> SSBOND CANDIDATES
INFORMATION> CYS-(CYM) CANDIDATES
CHAIN ID RESIDUE NAME RESID ID
INFORMATION> EXIST NEAR ATOM
RESIDUE NAME RESIDUE ID ATOM NAME
CYS CYS 7 6 HA O
INFORMATION> REPAIRED NEAR ATOM
RESIDUE NAME RESIDUE ID ATOM NAME
CYS 7 HA
INFORMATION> LINEAR TORSION ATOM
RESIDUE ID ATOM NAME
INFORMATION> OUTPUT
OUTPUT FILE
result_hyd.pdb

② 出力 PDB ファイル

以下に、入力 PDB ファイル(加工前)と、加工後の出力 PDB ファイルを Rasmol で表示 した例を示します。

図 3.4-(1) 近接原子補正例

- ※1…CYS(ID=7)残基の HA 原子(青い球)に対し、CYS(ID=6)残基の O 原子(赤い球)が近 い位置に配置されており、結合状態で表示されています。
- ※2…補正後、CYS(ID=7)残基の HA 原子(青い球)が同残基の最も近い原子(緑色の球)との距離が短縮されたことが分かります。

3.6 Sample-6: 直行する二面角の検出と補正

本節では、直行する二面角の検出と補正を行う例を示します。入力 PDB ファイルでは、 残基 ID(1)の C 原子、残基 ID2 の N 原子、残基 ID2 の CA 原子の 3 点が一直線上に配置 され、直行する二面角を構成する要因となっています。pdbcheck ツールはこれを検出し、 メッセージを出力します。また、加工オプション(-dih)を指定することで、3 点のうち、 真ん中の原子の座標を±0.1Åの範囲でずらします。

■実行方法

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- 2 pdbcheckのコントロールファイルを用意してください。このとき、オプションとして「-dih」を指定します。以下にコントロールファイルの例を示します。

/sample/sample6/pdbcheck_dih.pdb	
result_dih.pdb	
-dih	

コントロールファイルの例(-dih)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名	(pdbcheck にパスが通っている場合)
もしくは、	
% (path)/pdbcheck < コントロールファイル名	

■実行例

① 標準出力 (一部)

標準出力のメッセージから、残基 ID1 の C 原子、残基 ID2 の N 原子、CA 原子の 3 点が一直線上に配置されていることがわかります(※ 1)。また、残基 ID2 の N 原子の 原子の座標が補正されたことが分かります(※ 2)。

PDB CHECK TOOL v1.1 2012. Sep. 14

INFORMATION INPUT

- 1) INPUT FILE
 - ../sample/sample6/pdbcheck_dih.pdb
- 2) OUTPUT FILE

result_dih.pdb

3) SPECIFIED OPTION

-dih

INFORMATION> DIVISION OF CHAINS.

CHAIN NAME RESIDUE NAME RESIDUE ID REASON (EXCEPT TER AND CHAIN ID)
INFORMATION> EXIST ALTERNATE LOCATION INDICATOR
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LACKED MAIN CHAIN
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> TERMINAL RESIDUE
RESIDUE NAME RESIDUE ID DISTANCE
INFORMATION> SSBOND CANDIDATES
INFORMATION> CYS-(CYM) CANDIDATES
CHAIN ID RESIDUE NAME RESID ID
INFORMATION> EXIST NEAR ATOM
RESIDUE NAME RESIDUE ID ATOM NAME
2 N
INFORMATION> OUTPUT
OUTPUT FILE

出力 PDB ファイル

以下に、入力 PDB ファイル(加工前)と、加工後の出力 PDB ファイルを Rasmol で表示 した例を示します。

図 3.6-(1) 直行する二面角の補正例

- ※1…GLY 残基(ID=1)の C 原子(緑の球)、ILE 残基(ID=2)の N 原子(水色の球)、ILE 残 基(ID=2)の CA 原子(黄色の球)が完全な直線上に並び、直行する二面角の要因とな ることが分かります。
- ※2…補正後、ILE 残基の N 原子(水色の球)の座標が補正され、3 点が角度をもった直線 上に並んだことが分かります。

3.7 Sample-7: HETATM 行の無効化

本節では、入力 PDB の HETATM 行の読込み有無、および出力の有無を制御する例を 示します。加工オプション(-disableHet)を指定することで、入力 PDB からの HETATM 行読込み、また出力 PDB への HETATM 行出力を無効にすることができます。

■実行方法(-disableHet 未指定)

加工オプション「-disableHet」指定時と、指定していない時の PDB 出力の確認をする ため、初めに-disableHet を指定しない場合の PDB 出力を確認します。

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- ② pdbcheckのコントロールファイルを用意してください。動作の違いをみるため、オプションとして「-disableHet」は指定しません。以下にコントロールファイルの例を示します。

../sample/sample7/pdbcheck_disableHet.pdb result_no_disableHet.pdb

コントロールファイルの例(-disableHet 未指定時)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名</th>(pdbcheck にパスが通っている場合)もしくは、% (path)/pdbcheck < コントロールファイル名</td>

■実行例(-disableHet 未指定)

標準出力

「-disableHet」を指定しない場合、PDB チェックツールは、入力 PDB の HETATM 行を読込み、残基の分類を解析し、仕様に基づき各種検出・加工を行います。また、 アミノ酸残基と核酸残基以外は、HETATM 行として PDB に出力します。

本節の例では、入力 PDB の ASP(1)残基(アミノ酸残基)、DC(5)残基(核酸残基)、 HEM(412)残基(リガンド残基)に、alternate location indicator が存在します。 「-disableHet」を指定していないので、HETATM 行で記述された HEM 残基も読込 み、検出処理が実行されていることが分かります(※1)。また、出力 PDB には、アミ ノ酸残基、核酸残基は ATOM 行で出力され、それ以外のリガンド残基、水グループ残 基、Na イオングループ残基、Cl イオングループ残基は HETATM 行で出力されている ことが分かります。※2 PDB CHECK TOOL v1.1 2012. Sep. 14

INFORMATION INPUT

1) INPUT FILE

../sample/sample7/pdbcheck_disableHet.pdb

2) OUTPUT FILE

result_no_disableHet.pdb

3) SPECIFIED OPTION

INFORMATION> DIVISION OF CHAINS.

CHAIN	NAME	RESIDUE	NAME	RESIDU	JE ID	REASON (EXCEPT TER AND CHAIN ID)	
C	С	LHG	NA	161	1157	TERMINAL OF NA ION GROUP(TOP)	
C	C	NA	LHG	1157	1158	TERMINAL OF NA ION GROUP(LAST)	
D	D	CL	К	2003	3004	TERMINAL OF CL ION GROUP(LAST)	
D	D	К	NA	3004	4005	TERMINAL OF NA ION GROUP(TOP)	
Е	E	CL	К	5003	5004	TERMINAL OF CL ION GROUP(LAST)	
C	C	HEM	CA	412	2503	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	CA	ACT	2503	4004	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	ACT	LHG	4007	161	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	LHG	UMQ	1160	1161	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	UMQ	LHG	1162	1163	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	ACT	ACT	4004	4007	DISTANCE IS FAR	
C	C	LHG	LHG	1158	1159	DISTANCE IS FAR	
C	C	LHG	LHG	1159	1160	DISTANCE IS FAR	₩1
С	С	UMQ	UMQ	1161	1162	DISTANCE IS FAR	$\mathbf{\mathcal{V}}$

INFORMATION> EXIST ALTERNATE LOCATION INDICATOR RESIDUE NAME RESIDUE ID ATOM NAME 1 ASP CB 1 ASP CG 5 **0P1** DC 5 DC 0P2 HEM 412 CHA HEM 412 CHB

INFORMATION> LACKED MAIN CHAIN

RESIDUE NAME RESIDUE ID ATOM NAME

INFORMATION> TERMINAL RESIDUE RESIDUE NAME RESIDUE ID DISTANCE INFORMATION> SSBOND CANDIDATES INFORMATION> CYS-(CYM) CANDIDATES CHAIN ID RESIDUE NAME RESID ID INFORMATION> EXIST NEAR ATOM RESIDUE NAME RESIDUE ID ATOM NAME INFORMATION> LINEAR TORSION ATOM RESIDUE ID ATOM NAME INFORMATION> OUTPUT OUTPUT FILE result_no_disableHet.pdb ② 出力 PDB(一部)

	ATOM	1	Ν	ASP	А	1	49. 081	19. 903	70. 461	1.00 27.58			
	ATOM	2	CA	ASP	A	1	49.694	19. 323	69. 252	1.00 26.78	※2(アミ	ミノ酸、核酸は	は
		(途中:	省略)								ATOM ?	行で出力され	ħ
	ATOM	26	0E1	GLU	A	3	52.777	20. 616	67. 342	0.50 25.50	ます)		
	ATOM	27	0E2	GLU	A	3	52. 984	22. 737	67. 242	0.50 25.28			
	TER												
	ATOM	28	Р	DC	В	1	60. 318	19. 118	45. 618	1.00 28.54			
	ATOM	29	0P1	DC	В	1	61.361	18. 321	46. 314	1.00 28.94			
		(途中:	省略)										
	ATOM	89	N3	DG	В	3	47. 237	18. 987	48. 040	1.00 20.82			
	ATOM	90	C4	DG	В	3	48.080	18. 010	48. 340	1.00 26.38			
	TFR												
ľ	HETATM	91	CHA	HEM	С	1	-63. 986	5. 925	20. 427	1.00 19.91			
	HETATM	92	CHA	HEM	С	1	-73. 986	15. 925	30. 427	1.00 19.91	※2(リ)	ガンド/水/Ň	Ja
		(途中:	省略)								イオン/	Cl イオン	は
	HETATM	134	ND	HEM	С	1	-63. 815	4. 193	22. 211	1.00 21.66	HETATI	M 行で出力	さ
	HETATM	135	FE	HEM	С	1	-64. 388	2. 545	21.005	1.00 22.44	れます)		
	TER												
		(途中:	省略)										
	HETATM	318	NA	NA	Ρ	1	25. 226	54. 063	58. 210	1.00 22.41			
	HETATM	319	NA	NA	Q	1	35. 226	54. 063	58. 210	1.00 22.41			
	TER												
	HETATM	320	CL	CL	R	1	-1.634	69. 058	101. 828	1.00 20.77			
	HETATM	321	CL	CL	S	1	-9.634	69. 058	101. 828	1.00 20.77			
	TER												
	HETATM	322	0	HOH	Т	1	-29. 814	56. 484	45. 770	1.00 8.46			
	HETATM	323	0	HOH	Т	2	-31. 131	44. 699	68. 105	1.00 8.70			
	HETATM	324	0	HOH	Т	3	-30. 135	40. 051	67. 280	1.00 10.24			
		(途中:	省略)		•								
	HETATM	329	0	HOH	۷	2	-5. 329	60. 044	94. 423	1.00 17.24			
	HETATM	330	0	HOH	۷	3	-6. 913	41.067	100. 120	1.00 22.37			
	TER												

■実行方法(-disableHet 指定)

次に、加工オプション「-disableHet」を指定した時の PDB 出力を確認します。

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- 2 pdbcheck のコントロールファイルを用意してください。オプションとして 「-disableHet」は指定します。以下にコントロールファイルの例を示します。

../sample/sample7/pdbcheck_disableHet.pdb result_disableHet.pdb -disableHet

コントロールファイルの例(-disableHet 指定時)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名	(pdbcheck にパスが通っている場合)
もしくは、	
% (path)/pdbcheck < コントロールファイル名	

■実行例(-disableHet 指定)

標準出力

「-disableHet」を指定した場合、入力 PDB の HETATM 行は読込みません。また、残 基の分類は解析せず、ATOM 行で記述されたものは全てアミノ酸残基とみなし、各種 検出・加工処理を行います。また、ATOM 行で記述されたものは、すべて ATOM 行で 出力 PDB に出力します。

本節の例でも同様に、入力 PDB の ASP(1)残基(アミノ酸残基)、DC(5)残基(核酸残基)、 HEM(412)残基(リガンド残基)に、alternate location indicator が存在します。

「・disableHet」を指定しているので、HETATM 行で記述された HEM 残基は読込ま れません。したがって、HEM 残基については検出処理も実行されず、アミノ酸と核酸 のみが検出されています(※1)。また、ATOM 行で記述されたものを全てアミノ酸残基 として認識するため、DC(5)残基(核酸残基)などの核酸残基に対しても、例えば主鎖原 子欠損検出処理が実行されます。その結果、DC(5)残基(核酸残基)などに対しても、主 鎖原子の欠損が検出されています(※2)。

出力 PDB には、アミノ酸残基、核酸残基は ATOM 行で出力されますが、それ以外 のリガンド残基、水グループ残基、Na イオングループ残基、Cl イオングループ残基は 出力されていません(※3)。

PDB CHECK TOOL v1.1 2012. Sep. 14

INFORMATION IN	IPUT				
1) INPUT FIL	.E				
/sample/	sample7/pdbche	ck_disableHet	. pdb		
2) OUTPUT FI	LE				
result_no_	disableHet.pdb	I			
3) SPECIFIED	OPTION				
-disableH	let				
INFORMATION> D	IVISION OF CHA	INS.			
CHAIN NAME	RESIDUE NAME	RESIDUE ID	REASON (EXCEPT TER AND C	CHAIN ID)	
				※1(HEM は	検出さ
INFORMATION> E	XIST ALTERNATE	LOCATION IND	ICATOR	れていません)	
RESIDUE NAME	RESIDUE ID	ATOM NAME			
ASP	1	CB			
ASP	1	CG			
DC	5	0P1			
DC	5	OP2			
				※2(核酸に対し	ノて、主
INFORMATION> L	ACKED MAIN CHA	IN		鎖原子欠損の	検出が
RESIDUE NAME	RESIDUE ID	ATOM NAME		されています)	
DC	5	Ν			
DC	5	CA			
DC	5	C			
DC	5	0			
DT	6	Ν			
DT	6	CA			
DT	6	C			
DT	6	0			
DG	7	Ν			
DG	7	CA			

INFORMATION> TERMINAL RESIDUE

DG

DG

RESIDU	E NAME	E RES	SIDUE ID	DIST	ANCI	E
WARNING:	MAIN	CHAIN	INVALID:	DC	5	
WARNING:	MAIN	CHAIN	INVALID:	DT	6	
WARN ING:	MAIN	CHAIN	INVALID:	DT	6	

7

7

С

0

WARNING: MAIN CHAIN INVALID: DG 7
INFORMATION> SSBOND CANDIDATES
INFORMATION> CYS-(CYM) CANDIDATES
CHAIN ID RESIDUE NAME RESID ID
INFORMATION> EXIST NEAR ATOM RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LINEAR TORSION ATOM
RESIDUE ID ATOM NAME
INFORMATION> OUTPUT OUTPUT FILE
result_disableHet.pdb

)出力]	PDB(一部)							※3 (HETATM 行は出力
ATOM	1	Ν	ASP	Α	1	49. 081	19. 903	70. 461	1.00 27.58	されません)
ATOM	2	CA	ASP	Α	1	49. 694	19. 323	69. 252	1.00 26.78	
	(途中省	(略)	•••	•						
ATOM	26	0E1	GLU	Α	3	52. 777	20. 616	67. 342	0.50 25.50	
ATOM	27	0E2	GLU	Α	3	52. 984	22. 737	67. 242	0.50 25.28	
TER										
ATOM	28	Ρ	DC	В	1	60. 318	19. 118	45. 618	1.00 28.54	
ATOM	29	0P1	DC	В	1	61.361	18. 321	46. 314	1.00 28.94	
	(途中省	(略)	•••	•						
ATOM	89	N3	DG	В	3	47. 237	18. 987	48. 040	1.00 20.82	
ATOM	90	C4	DG	В	3	48.080	18. 010	48. 340	1.00 26.38	
TER										

3.8 Sample-8:チェイン構造の保持

本節では、入力 PDB のチェイン構造を TER 行のみで分割し、PDB 出力する例を示しま す。加工オプション(-keepTer)を指定することで、入力 PDB の TER 行のみでチェインを認 識(分割)し、そのチェイン構造を保ったまま PDB に出力します。

PDB チェックツールは、入力 PDB のチェイン構造を解析し、チェインを区切り、各種 検出・加工を行い、PDB 出力をします。また、出力時は、Na イオンのグループ、Cl イオ ンのグループ、水のグループは、グループ毎に最後にまとめて出力する仕様となっていま す。PDB チェックツールのチェインの分割や出力順の仕様が何らかの理由で不都合が生じ る場合、加工オプション(・keepTer)を指定することで、入力 PDB の TER の位置のみでチェ インの構造を分割し、チェインの構造を保ったまま、各種チェック・加工を行い、その結 果を PDB 出力することができます。

※本機能は TER が正しい位置に記述されていることを前提とします。TER 行のみでチェイン分割を行うため、正しい位置に TER が存在しない場合、各機能について、予期しない検出や加工が行われる場合があることに注意してください。(例えば、チェイン ID が相違していても、TER 行がない場合は、チェイン分割されません。)

■実行方法(-keepTer 未指定)

加工オプション「-keepTer」指定時と、指定していない時の PDB 出力の確認をするため、 初めに-keepTer を指定しない場合の PDB 出力を確認します。

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- ② pdbcheckのコントロールファイルを用意してください。動作の違いをみるため、オプションとして「-keepTer」は指定しません。以下にコントロールファイルの例を示します。

../sample/sample8/pdbcheck_keepTer.pdb result_no_keepTer.pdb

コントロールファイルの例(-keepTer 未指定時)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名 (pdbcheck にパスが通っている場合) もしくは、 % (path)/pdbcheck < コントロールファイル名

■実行例(-keepTer 未指定)

標準出力

「-keepTer」を指定しない場合、PDB チェックツールはチェイン構造を解析しチェインを分割します。チェイン分割を行った場合、その箇所とチェイン分割の理由をメッセージとして出力します(※1)。ただし、TER 行による分割と、チェイン ID による分割については、チェインの区切りが明確なためメッセージは出力しません(※1)。 例えば、メッセージから以下の理由でチェインが分割されていることが分かります。

- チェイン C の HEM(412)と CA(2503)間は、残基名の相違により、チェイン分割されています。チェイン C の CA(2503)と ACT(4004)間も同様に残基名の相違によりチェイン分割されています。
- チェイン C の ACT(4004)と同じく ACT(4007)間は、それぞれの原子間の距離が遠くに配置されているため、チェイン分割されています。
- ※メッセージ中に出てくるチェイン ID や残基 ID は入力 PDB 上の ID です。出力 PDB ではチェイン ID や残基 ID は PDB チェックツールによって加工されて出力される ため、メッセージ中の ID とは異なる場合があります。

PDB CHECK TOOL v1.1 2012. Sep. 14

INFORMATION INPUT

1) INPUT FILE

../sample/sample8/pdbcheck_keepTer.pdb

2) OUTPUT FILE

result_no_keepTer.pdb

3) SPECIFIED OPTION

INFORM	IATION>	DIVISIO	N OF CHA	INS.			
CHAI	N NAME	RESID	JE NAME	RESID	UE ID	REASON (EXCEPT TER AND CHAIN ID)	
C	C	LHG	NA	161	1157	TERMINAL OF NA ION GROUP (TOP)	
C	C	NA	LHG	1157	1158	TERMINAL OF NA ION GROUP (LAST)	
D	D	CL	K	2003	3004	TERMINAL OF CL ION GROUP (LAST)	
D	D	K	NA	3004	4005	TERMINAL OF NA ION GROUP (TOP)	
E	E	CL	K	5003	5004	TERMINAL OF CL ION GROUP (LAST)	
C	C	HEM	CA	412	2503	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	CA	ACT	2503	4004	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	ACT	LHG	4007	161	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	LHG	UMQ	1160	1161	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	UMQ	LHG	1162	1163	DIFFERENCE OF LIGAND RESIDUE NAME	
C	C	ACT	ACT	4004	4007	DISTANCE IS FAR	
C	C	LHG	LHG	1158	1159	DISTANCE IS FAR	
C	C	LHG	LHG	1159	1160	DISTANCE IS FAR	
C	C	UMQ	UMQ	1161	11 <mark>62</mark>	DISTANCE IS FAR	

INFORMATION> EXIST ALTERNATE LOCATION INDICATOR RESIDUE NAME RESIDUE ID ATOM NAME $\gg 1$

 $\times 1$

INFORMATION> LACKED MAIN CHAIN RESIDUE NAME RESIDUE ID ATOM NAME

INFORMATION> TERMINAL RESIDUE RESIDUE NAME RESIDUE ID DISTANCE

INFORMATION> SSBOND CANDIDATES

INFORMATION> CYS-(CYM) CANDIDATES

CHAIN ID RESIDUE NAME RESID ID INFORMATION> EXIST NEAR ATOM RESIDUE NAME RESIDUE ID ATOM NAME INFORMATION> LINEAR TORSION ATOM RESIDUE ID ATOM NAME INFORMATION> OUTPUT OUTPUT FILE result_no_keepTer.pdb

② 出力 PDB

メッセージに出力されているとおり、HEM-CA 間、CA-ACT 間、2 つの ACT 間でチ ェインが分割されて出力されています。(※2)また、Na イオンのグループ、Cl イオ ンのグループ、水のグループは、グループ毎に複数チェインをまとめて最後に出力さ れます。(※3)

ATOM	1	N	ASP	A	1	49.081	19. 903	70. 461	1.00 27.58	
ATOM	2	CA	ASP	A	1	49.694	19. 323	69. 252	1.00 26.78	
ATOM	3	С	ASP	A	1	51.085	18. 799	69. 596	1.00 25.90	
• • • (途中行	省略)	•••	•						
ATOM	23	CD	GLU	A	3	53.367	21.628	67. 712	0.50 24.56	
ATOM	24	0E1	GLU	A	3	52.777	20. 616	67. 342	0.50 25.50	
ATOM	25	0E2	GLU	A	3	52. 984	22. 737	67. 242	0.50 25.28	
TER										
ATOM	26	Ρ	DC	В	1	60. 318	19. 118	45. 618	1.00 28.54	
ATOM	27	0P1	DC	В	1	61.361	18. 321	46. 314	1.00 28.94	
ATOM	28	0P2	DC	В	1	59.497	18. 534	44. 547	1.00 38.05	
•••(途中省	省略)		•						
ATOM	84	N2	DG	В	3	46. 591	20. 401	46. 406	1.00 34.47	
ATOM	85	N3	DG	В	3	47. 237	18. 987	48. 040	1.00 20.82	NK 0
ATOM	86	C4	DG	В	3	48.080	18. 010	48. 340	1.00 26.38	* 2
TER										
HETATM	87	CHA	HEM	C	1	-63. 986	5. 925	20. 427	1.00 19.91	, i i i i i i i i i i i i i i i i i i i
HETATM	88	CHB	HEM	C	1	-66. 086	2. 296	17. 893	1.00 22.25	
HETATM	89	CHC	HEM	C	1	-65. 084	-0. 768	21. 562	1.00 22.55	
•••(途中行	省略)	• •	÷						
HETATM	127	NC	HEM	C	1	-64. 318	1. 297	22. 65 4	1.00 22.39	
HETATM	128	ND	HEM	C	1	-63 . 815	4. 193	22. 211	1.00 21.66	
HETATM	129	FE	HEM	C	1	-64. 388	2. 545	21.005	1.00 22.44	
TER										
HETATM	130	CA	CA	D	1	-52. 324	-0. 627	45. 250	1.00 43.00	
TER										× 9
HETATM	131	C	ACT	E	1	-50. 914	-0. 114	42. 466	1.00 50.68	* 2
HETATM	132	0	ACT	E	1	-51. 858	0. 665	42. 755	1.00 50.36	
HETATM	133	OXT	ACT	E	1	-50. 050	-0. 324	43. 376	1.00 49.96	
HETATM	134	CH3	ACT	E	1	-50. 888	-0. 775	41, 114	1.00 50.38	
TER										
HETATM	135	C	ACT	F	1	-56. 215	5. 882	12. 701	1.00 35.51	
HETATM	136	0	ACT	F	1	-56. 295	7. 026	13. 195	1.00 34.55	

43 / 56

HETATM 137 OXT ACT F 1 -56.952 5.680 11.691 1.00 36.10 HETATM 138 CH3 ACT F 1 -55.301 4.822 13.283 1.00 35.30 TER HETATM 139 C7 LHG G 1 33. 034 39. 289 42. 099 1. 00198. 14 HETATM 140 C8 LHG G 1 34. 194 40. 171 42. 546 1. 00198. 14 HETATM 141 C9 LHG G 35. 498 39. 734 41. 888 1. 00198. 11 1 ・・・(途中省略)・・・ HETATM 307 C36 LHG M 1 44. 647 48. 411 42. 891 1. 00118. 75 HETATM 308 C37 LHG M 1 44. 121 49. 242 41. 726 1. 00118. 86 HETATM 309 C38 LHG M 42.991 48.533 41.011 1.00118.94 1 TER HETATM 310 K ΚN -28.017 43.785 105.950 1.00 31.71 1 TER ₩3 HETATM 311 K Κ0 1 -38.017 43.785 105.950 1.00 31.71 TER 25. 226 54. 063 58. 210 1. 00 22. 41 HETATM 312 NA NA P 1 HETATM 313 NA NA Q 1 35. 226 54. 063 58. 210 1. 00 22. 41 TER HETATM 314 CL CL R 1 -1.634 69.058 101.828 1.00 20.77 HETATM 315 CL CL S -9.634 69.058 101.828 1.00 20.77 1 TER -29.814 56.484 45.770 1.00 8.46 **HETATM 316 0** HOH T 1 **HETATM 317 0** HOH T 2 -31. 131 44. 699 68. 105 1. 00 8. 70 **HETATM 318 0** HOH T 3 -30, 135 40, 051 67, 280 1, 00 10, 24 **HETATM 319 0** HOH U -23. 276 35. 774 66. 437 1. 00 14. 73 1 **HETATM 320 0** HOH U 2 -8.863 27.752 40.923 1.00 14.97 **HETATM 321 0** HOH U -12.962 50.404 58.525 1.00 11.20 3 **HETATM 322 0** HOH V 1 6.149 60.667 97.050 1.00 16.03 -5.329 60.044 94.423 1.00 17.24 **HETATM 323 0** HOH V 2 **HETATM 324 0** -6.913 41.067 100.120 1.00 22.37 HOH V 3 TER

■実行方法(-keepTer 指定)

次に、加工オプション「-keepTer」指定時の PDB 出力を確認します。

- ① 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
- ② pdbcheckのコントロールファイルを用意してください。オプションとして「-keepTer」 を指定します。以下にコントロールファイルの例を示します。

../sample/sample8/pdbcheck_keepTer.pdb result_keepTer.pdb -keepTer

コントロールファイルの例(-keepTer 指定時)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名 (pdbcheck にパスが通っている場合) もしくは、 % (path)/pdbcheck < コントロールファイル名

■実行例(-keepTer 指定)

① 標準出力

「-keepTer」を指定した場合、入力 PDB ファイルの TER 行の位置だけでチェインを 分割します。また、この動作について、特にメッセージは出力しません。

PDB CHECK TOOL v1.1 2012. Sep. 14

INFORMATION INPUT

1) INPUT FILE

 $\dots / sample / sample8 / pdbcheck_keepTer.pdb$

2) OUTPUT FILE

result_keepTer.pdb

3) SPECIFIED OPTION

-keepTer

INFORMATION> EXIST ALTERNATE LOCATION INDICATOR

RESIDUE NAME RESIDUE ID ATOM NAME

INFORMATION> LACKED MAIN CHAIN

RESIDUE NAME RESIDUE ID ATOM NAME

INFORMATION> TERMINAL RESIDUE RESIDUE NAME RESIDUE ID DISTANCE

```
INFORMATION> SSBOND CANDIDATES
INFORMATION> CYS-(CYM) CANDIDATES
CHAIN ID RESIDUE NAME RESID ID
INFORMATION> EXIST NEAR ATOM
RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LINEAR TORSION ATOM
RESIDUE ID ATOM NAME
INFORMATION> OUTPUT
OUTPUT FILE
result_keepTer.pdb
```

② 出力 PDB

「-keepTer」未指定時と違い、入力 PDB のチェイン構造が保たれ PDB が出力されています。

ATOM 1 N ASP A 1 49.081 19.903 70.461 1.00 27.58 ATOM 2 CA ASP A 1 49.694 19.323 69.252 1.00 26.78 ATOM 3 C ASP A 1 51.085 18.799 69.596 1.00 25.90 · · · (途中省略) · · · · · · · · · · ATOM 23 CD GLU A 3 53.367 21.628 67.712 0.50 24.56 ATOM 24 0E1 GLU A 3 52.777 20.616 67.342 0.50 25.50 ATOM 25 0E2 GLU A 3 52.984 22.737 67.242 0.50 25.28
ATOM2CAASP A149.69419.32369.2521.0026.78ATOM3CASP A151.08518.79969.5961.0025.90•••(途中省略)•••-ATOM23CDGLU A353.36721.62867.7120.5024.56ATOM240E1GLU A352.77720.61667.3420.5025.50ATOM250E2GLU A352.98422.73767.2420.5025.28
ATOM 3 C ASP A 1 51.085 18.799 69.596 1.00 25.90 ・・・(途中省略)・・・ - ATOM 23 CD GLU A 3 53.367 21.628 67.712 0.50 24.56 ATOM 24 0E1 GLU A 3 52.777 20.616 67.342 0.50 25.50 ATOM 25 0E2 GLU A 3 52.984 22.737 67.242 0.50 25.28
・・・(途中省略)・・・ ATOM 23 CD GLUA 3 53.367 21.628 67.712 0.50 24.56 ATOM 24 OE1 GLUA 3 52.777 20.616 67.342 0.50 25.50 ATOM 25 OE2 GLUA 3 52.984 22.737 67.242 0.50 25.28
ATOM 23 CD GLU A 3 53. 367 21. 628 67. 712 0. 50 24. 56 ATOM 24 0E1 GLU A 3 52. 777 20. 616 67. 342 0. 50 25. 50 ATOM 25 0E2 GLU A 3 52. 984 22. 737 67. 242 0. 50 25. 28
ATOM 24 0E1 GLU A 52. 777 20. 616 67. 342 0. 50 25. 50 ATOM 25 0E2 GLU A 3 52. 984 22. 737 67. 242 0. 50 25. 28
ATOM 25 0E2 GLU A 3 52.984 22.737 67.242 0.50 25.28
TER
ATOM 26 P DC B 1 60.318 19.118 45.618 1.00 28.54
ATOM 27 OP1 DC B 1 61.361 18.321 46.314 1.00 28.94
ATOM 28 OP2 DC B 1 59.497 18.534 44.547 1.00 38.05
・・・(途中省略)・・・
ATOM 84 N2 DG B 3 46.591 20.401 46.406 1.00 34.47
ATOM 85 N3 DG B 3 47.237 18.987 48.040 1.00 20.82
ATOM 86 C4 DG B 3 48.080 18.010 48.340 1.00 26.38
TER
HETATM 87 CHA HEM C 1 -63.986 5.925 20.427 1.00 19.91
HETATM 88 CHB HEM C 1 -66.086 2.296 17.893 1.00 22.25
HETATM 89 CHC HEM C 1 -65.084 -0.768 21.562 1.00 22.55

46 / 56

•••(途中	省略)	••	•					
HETATM	127	NC	HEM	C	1	-64. 318	1. 297	22. 654	1.00 22.39
HETATM	128	ND	HEM	С	1	-63. 815	4. 193	22. 211	1.00 21.66
HETATM	129	FE	HEM	C	1	-64. 388	2. 545	21.005	1.00 22.44
HETATM	130	CA	CA	C	2	-52. 324	-0. 627	45. 250	1.00 43.00
HETATM	131	C	ACT	C	3	-50. 914	-0. 114	42. 466	1.00 50.68
HETATM	132	0	ACT	C	3	-51.858	0. 665	42. 755	1.00 50.36
HETATM	133	OXT	ACT	C	3	-50. 050	-0. 324	43. 376	1.00 49.96
HETATM	134	CH3	ACT	C	3	-50. 888	-0. 775	41. 114	1.00 50.38
HETATM	135	C	ACT	C	4	-56. 215	5. 882	12. 701	1.00 35.51
HETATM	136	0	ACT	C	4	-56. 295	7.026	13. 195	1.00 34.55
HETATM	137	OXT	ACT	C	4	-56. 952	5. 680	11.691	1.00 36.10
HETATM	138	CH3	ACT	С	4	-55. 301	4. 822	13. 283	1.00 35.30
HETATM	139	C7	LHG	C	5	33. 034	39. 289	42. 099	1. 00198. 14
HETATM	140	C8	LHG	C	5	34. 194	40. 171	42. 546	1. 00198. 14
HETATM	141	C9	LHG	С	5	35. 498	39. 734	41. 888	1. 00198. 11
•••(途中	省略)	• •	•					
HETATM	308	C36	LHG	С	12	44. 647	48. 411	42. 891	1. 00118. 75
HETATM	309	C37	LHG	С	12	44. 121	49. 242	41. 726	1. 00118. 86
HETATM	310	C38	LHG	С	12	42. 991	48. 533	41.011	1. 00118. 94
TER									
HETATM	311	CL	CL	D	1	-1.634	69. 058	101.828	1.00 20.77
HETATM	312	К	K	D	2	-28. 017	43. 785	105. 950	1.00 31.71
HETATM	313	NA	NA	D	3	35. 226	54. 063	58. 210	1.00 22.41
TER									
HETATM	314	CL	CL	Ε	1	-9. 634	69. 058	101.828	1.00 20.77
HETATM	315	Κ	K	Ε	2	-38. 017	43. 785	105. 950	1.00 31.71
TER									
HETATM	316	0	HOH	F	1	-29. 814	56. 484	45.770	1.00 8.46
HETATM	317	0	HOH	F	2	-31. 131	44. 699	68. 105	1.00 8.70
HETATM	318	0	HOH	F	3	-30. 135	40. 051	67. 280	1.00 10.24
TER									
HETATM	319	0	HOH	G	1	-23. 276	35. 774	66. 437	1.00 14.73
HETATM	320	0	HOH	G	2	-8.863	27. 752	40. 923	1.00 14.97
HETATM	321	0	HOH	G	3	-12. 962	50. 404	58. 525	1.00 11.20
TER									
HETATM	322	0	HOH	H	1	6. 149	60.667	97. 050	1.00 16.03
HETATM	323	0	HOH	Η	2	-5. 329	60.044	94. 423	1.00 17.24

47 / 56

HETATM 324 0 HOH H 3 -6.913 41.067 100.120 1.00 22.37 TER 3.9 Sample-9: REMARK 行の出力

本節では、入力 PDB の REMARK 行を出力 PDB に出力する例を示します。加工オプ ション(-remark)を指定することで、入力 PDB の REMARK 行を出力 PDB ファイルに出 力することができます。

■実行方法

- 任意のディレクトリ内に、チェック対象となる入力 PDB ファイルを用意してください。
 ここでは例として、1MLC.pdb をダウンロードし使用します。ダウンロードしたファ イルは、pdbcheck/sample/sample9 ディレクトリに配置してください。
- 2 pdbcheckのコントロールファイルを用意してください。このとき、オプションとして「-remark」を指定します。以下にコントロールファイルの例を示します。

../sample/sample9/1MLC.pdb result_remark.pdb -remark

コントロールファイルの例(-remark)

③ pdbcheck を実行します。実行時に、コントロールファイルを標準入力から入力します。

% pdbcheck < コントロールファイル名 (pdbcheck にパスが通っている場合) もしくは、 % (path)/pdbcheck < コントロールファイル名

■実行例

① 標準出力 標準出力には、REMARK 行の出力について、特にメッセージは出力されません。

```
      PDB CHECK TOOL v1.1
      2012. Sep. 14

      INFORMATION INPUT
      1) INPUT FILE

      .../sample/sample9/1MLC.pdb

      2) OUTPUT FILE

      result_remark.pdb

      3) SPECIFIED OPTION

      -remark

      INFORMATION> DIVISION OF CHAINS.

      CHAIN NAME
      RESIDUE NAME

      RESIDUE ID
      REASON (EXCEPT TER AND CHAIN ID)
```

```
INFORMATION> EXIST ALTERNATE LOCATION INDICATOR
 RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LACKED MAIN CHAIN
 RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> TERMINAL RESIDUE
 RESIDUE NAME RESIDUE ID DISTANCE
INFORMATION> SSBOND CANDIDATES
SSBOND
       1 CYS A 23
                      CYS A 88
SSBOND
       2 CYS A 134 CYS A 194
SSBOND
       3 CYS B 22 CYS B 96
SSBOND
       4 CYS B 143 CYS B 198
SSBOND
       5 CYS C 23 CYS C
                              88
SSBOND
       6 CYS F 64 CYS F
                              80
SSBOND
       7 CYS F 76 CYS F 94
INFORMATION> CYS-(CYM) CANDIDATES
 CHAIN ID RESIDUE NAME RESID ID
INFORMATION> EXIST NEAR ATOM
 RESIDUE NAME RESIDUE ID ATOM NAME
INFORMATION> LINEAR TORSION ATOM
 RESIDUE ID
                    ATOM NAME
INFORMATION> OUTPUT
 OUTPUT FILE
   result_remark.pdb
```

② 出力 PDB ファイル(一部)

入力 PDB の REMARK 行が出力 PDB にも出力されています。(※1)
※入力 PDB 内に、REMARK 行が複数個所に記述されている場合でも、出力 PDB には1箇所にまとまって出力されます。

REMARK	1															×1
REMARK	1	REFER	ENCE	1												<i></i> %1
REMARK	1	AUTH	T	FI.	SCHMA	NN, H. SC	OUCHO	N, M	. –M. R	IOTTO	T, D.	TELL	0,			
REMARK	1	AUTH	2 R	. J.	POLJA	K										
REMARK	1	TITL	C	RYS	TALLI	ZATION	AND	PRE	LIMIN	ARY X	-RA)	Y DIF	FRACT IO	N		
REMARK	1	TITL 2 STUDIES OF TWO ANTIGEN-ANTIBODY (LYSOZYME-FAB)														
REMARK	1	TITL 3 COMPLEXES														
REMARK	1	REF	J	. MO	L. BIO	L.				V . :	203	52	7 1988			
REMARK	1	REFN	l -				ISSN	00	22–28	36						
REMARK	2															
• • •	(途中	省略)	• •	•												
REMARK	525	M RE	S CS	SEQ	I											
REMARK	525	HO	H B1	701		DIST	ANCE	=	5. 46	ANGS	TROM	IS				
ATOM	1	Ν	ASP	A	1	49.	081	19.	903	70. 46	61	1.00	27. 58			
ATOM	2	CA	ASP	A	1	49.	694	19.	323	69. 25	52	1.00	26. 78			
ATOM	3	C	ASP	A	1	51.	085	18.	799	69.59	96	1.00	25.90			
ATOM	4	0	ASP	A	1	51.	599	19.	272	70. 59	96	1.00	26. 02			
ATOM	5	CB	ASP	A	1	49.	798	20.	448	68. 22	20	1. 00	28. 81			
ATOM	6	CG	ASP	A	1	48.	465	21.	208	68.35	50	1.00	30. 49			
ATOM	7	0D1	ASP	A	1	47.	530	20.	565	68.87	70	1.00	30. 23			
ATOM	8	0D2	ASP	A	1	48.	446	22.	357	67.90)6	1.00	32. 55			
• • • (途中	省略)	•••	•												
HETATM	8789	0	HOH	L	20	95.	650	28.	187	27.27	12	1.00	37. 30			
HETATM	8790	0	HOH	L	21	95.	504	16.	767	17. 17	12	1.00	42. 41			
HETATM	8791	0	HOH	L	22	89.	647	14.	935	29. 29	91	1.00	45. 05			
HETATM	8792	0	HOH	L	23	90.	821	15.	269	50. 05	58	1. 00	44. 13			
TER																

※本サンプルの入力オプションに「-ss」を追記することで、出力 PDB に SSBOND 行が 出力されます。SSBOND 行は REMARK 行の後に出力されます。

3.10 Sample-10: CYSS の出力

本節では、SS 結合している CYS 残基を検出し、出力 PDB に残基名 CYSS として出力 する例を示します。SS 結合している CYS 残基を CYSS 残基として出力するためには、 PDB チェックツールの make 時に Makefile 内の FFLAGS に「-D ENABLE_RENAME_CYSS」を追記し、make コマンドを実行しなおす必要があります。

■実行方法

以下に、その手順を示します。本操作は pdbcheck/src ディレクトリで実行してください。

① Makefile の FFLAGS に「-D ENABLE_RENAME_CYSS」を追記します。※1

実行オブジェクトを新たに作り直すため、「make clean」コマンドを実行し、既存の実行オブジェクトを削除します。

\$ make clean	
rm -f pdbcheck ∗.o	

既存の実行オブジェクト削除の例

③ 「make」コマンドを実行し、実行オブジェクトを新たに作成します。

\$ make
ifort -warn -D ENABLE_RENAME_CYSS -c math.F
ifort -warn -D ENABLE_RENAME_CYSS -c z-matrix.f90
ifort -warn -D ENABLE_RENAME_CYSS -c check.F
ifort -warn -D ENABLE_RENAME_CYSS -c io.F
ifort -warn -D ENABLE_RENAME_CYSS -c analysis.F
ifort -warn -D ENABLE_RENAME_CYSS -c check_main.F
ifort -warn -D ENABLE_RENAME_CYSS -o pdbcheck math.o z-matrix.o check.o io.o analysis.o
check_main. o
cp pdbcheck/bin

実行オブジェクト作成の例

④ 「3.4 Sample-4: SSBOND の検出と補正」の手順に従い、PDB を出力します。

■実行例

出力 PDB ファイル

SSBOND 行の CYS 残基名が CYSS として出力されています(※1)。また、出力対象 残基の残基名が CYSS として出力されています(※2)。

r 									₩1	
SSBOND	1 C	YSSA	3	CYSSA	8					
ATOM	1	Ν	GLU A	1	-7. 043	13. 019	12. 935	1.00 16.58		
ATOM	2	CA	GLU A	1	-6. 889	12. 474	14. 295	1.00 15.32		
ATOM	3	С	GLU A	1	-8. 004	11. 558	14. 610	1.00 16.88		
ATOM	4	0	GLU A	1	-7. 888	10. 474	15. 128	1.00 23.30		
ATOM	5	CB	GLU A	1	-6. 809	13. 691	15. 266	1.00 17.11		
ATOM	6	CG	GLU A	1	-5. 615	14. 565	14. 951	1.00 21.45		
ATOM	7	CD	GLU A	1	-5. 704	15. 457	13. 735	1.00 21.59		
ATOM	8	0E1	GLU A	1	-6. 757	15. 959	13. 377	1.00 23.43		
ATOM	9	0E2	GLU A	1	-4. 568	15. 569	13. 179	1.00 25.36		
ATOM	10	Ν	GLN A	2	-9. 199	12. 048	14. 356	1.00 15.69		
ATOM	11	CA	GLN A	2	-10. 407	11. 299	14. 630	1.00 12.38		
ATOM	12	С	GLN A	2	-10. 431	9.940	13. 980	1.00 19.86		
ATOM	13	0	GLN A	2	-10. 815	8. 931	14. 542	1.00 16.83		
ATOM	14	CB	GLN A	2	-11. 594	12. 130	14. 152	1.00 21.13		
ATOM	15	CG	GLN A	2	-12. 860	11. 374	14. 561	1.00 22.06		
ATOM	16	CD	GLN A	2	-13. 946	11.901	13. 634	1.00 42.02		
ATOM	17	0E1	GLN A	2	-13. 908	13. 027	13. 169	1.00 55.10		₩2
ATOM	18	NE2	GLN A	2	-14. 943	11.030	13. 351	1.00 27.27		
ATOM	19	Ν	CYSSA	3	-10. 033	9.815	12. 695	1.00 13.19		
ATOM	20	CA	CYSSA	3	-10. 050	8. 518	12.065	1.00 12.63		
ATOM	21	С	CYSSA	3	-9. 105	7. 520	12. 667	1.00 9.95		
ATOM	22	0	CYSSA	3	-9. 395	6. 288	12. 666	1.00 14.22		
ATOM	23	CB	CYSSA	3	-9. 660	8. 673	10. 559	1.00 12.54		
ATOM	24	SG	CYSSA	3	-10. 925	9. 459	9. 579	1.00 13.00		
ATOM	25	Ν	CYS A	4	-8. 018	7. 992	13. 171	1.00 10.84		
ATOM	26	CA	CYS A	4	-6. 964	7. 186	13. 808	1.00 17.02		
ATOM	27	C	CYS A	4	-7. 236	6. 948	15. 358	1.00 13.71		
ATOM	28	0	CYS A	4	-7. 061	5. 782	15. 768	1.00 19.28		
ATOM	29	CB	CYS A	4	-5. 578	7.826	13. 656	1.00 20.24		
ATOM	30	SG	CYS A	4	-4. 181	6.819	14. 134	1.00 13.80		

53 / 56

ATOM	31	Ν	THR A	5	-7. 655	7.937	16. 058	1.00 12.57	
ATOM	32	CA	THR A	5	-7. 862	7. 732	17. 520	1.00 19.99	
ATOM	33	С	THR A	5	-9. 143	6. 997	17. 870	1.00 26.34	
ATOM	34	0	THR A	5	-9. 189	6. 157	18. 795	1.00 25.43	
ATOM	35	СВ	THR A	5	-7. 728	9. 055	18. 386	1.00 20.77	
ATOM	36	0G1	THR A	5	-8.889	9. 918	18. 117	1.00 26.76	
ATOM	37	CG2	THR A	5	-6. 334	9. 700	18. 196	1.00 26.50	
ATOM	38	Ν	SER A	6	-10. 170	7.350	17. 058	1.00 20.01	
ATOM	39	CA	SER A	6	-11. 509	6.803	17. 121	1.00 16.88	
ATOM	40	С	SER A	6	-11. 796	5. 981	15.856	1.00 12.70	
ATOM	41	0	SER A	6	-11. 139	5.010	15. 473	1.00 17.60	
ATOM	42	CB	SER A	6	-12. 331	8.067	17. 439	1.00 19.52	
ATOM	43	OG	SER A	6	-13. 674	7.774	17. 650	1.00 32.34	
ATOM	44	Ν	ILE A	7	-12. 883	6. 382	15. 159	1.00 15.34	
ATOM	45	CA	ILE A	7	-13. 350	5. 723	13. 932	1.00 20.23	
ATOM	46	C	ILE A	7	-13. 969	6.902	13. 106	1.00 17.50	
ATOM	47	0	ILE A	7	-14. 355	7. 922	13. 623	1.00 16.60	
ATOM	48	CB	ILE A	7	-14. 366	4. 524	14. 047	1.00 19.39	
ATOM	49	CG1	ILE A	7	-15. 702	4. 874	14. 742	1.00 22.05	
ATOM	50	CG2	ILE A	7	-13. 711	3. 300	14. 723	1.00 23.30	₩2
ATOM	51	CD1	ILE A	7	-16. 702	3. 722	15. 005	1.00 42.11	
ATOM	52	Ν	CYSSA	8	-14. 080	6. 685	11.767	1.00 12.14	
ATOM	53	CA	CYSSA	8	-14. 665	7.679	10. 880	1.00 11.24	
ATOM	54	С	CYSS A	8	-15. 301	6. 881	9. 766	1.00 12.17	
ATOM	55	0	CYSS A	8	-14. 962	5. 692	9. 528	1.00 21.14	
ATOM	56	CB	CYSS A	8	-13. 695	8. 702	10. 417	1.00 13.03	
ATOM	57	SG	CYSSA	8	-12. 275	8. 119	9. 385	1.00 13.60	
ATOM	58	Ν	SER A	9	-16. 233	7. 557	9. 095	1.00 11.37	
ATOM	59	CA	SER A	9	-16. 999	6. 978	8.005	1.00 9.91	
ATOM	60	С	SER A	9	-16. 563	7. 644	6. 726	1.00 7.40	
ATOM	61	0	SER A	9	-15. 967	8. 753	6. 711	1.00 9.67	
ATOM	62	СВ	SER A	9	-18. 516	7. 183	8. 084	1.00 16.64	
ATOM	63	OG	SER A	9	-18.869	8. 543	7. 881	1.00 17.14	
TER									

※SSBOND している CYS 残基を CYSS として出力した PDB ファイルを tplgene で 読込むことはできません。tplgene での処理途中にエラーが発生します。 ※サンプルを試すため本手順を実行した場合、CYSS で出力しないように元に戻す必要が あります。本手手順で追加した「-D ENABLE_RENAME_CYSS」を削除して「make clean」 コマンド、および「make」コマンドを再実行し実行オブジェクトを作成しなおし てください。 (余白)