myPresto 5.0

- Screening with TGS method-

USER MANUAL

2018/01/12

Copyright (C) 2006-2018 Next Generation Natural Product Chemistry (N²PC)

本ドキュメントについて

本ドキュメントは、「*myPresto* 5.0 USER MANUAL」の別冊です。コピーライト、プログ ラム使用許諾条件、著者および引用文献については、「*myPresto* 5.0 USER MANUAL」の記 述に準じます。

謝辞

本ソフトウェアの研究開発は、国立研究開発法人日本医療研究開発機構(AMED)の援助に よって行われました。ここに感謝の意を記します。

本ソフトウェアは、故・京極好正博士の始められた研究の中で開発されました。

目次

1	TGS 法スクリーニングシステムの概要	4
2	システムのフェーズ構成	4
3	ディレクトリ構成	5
4	インストールと準備	6
5	テストプログラムの実行	6
6	操作手順	$\overline{7}$
7	サンプルデータを使った実行例	9

1 TGS 法スクリーニングシステムの概要

TGS (Topology Graph Similarity)法は、指定した化合物と似た化合物をデータベースの中から抽出する方法です。この方法では、分子の共有結合をエッジとした分子グラフをエッジ 行列表示とし、その行列固有値を指標とし、化合物の類似性を探索します。分子の構造情報は、実数値のベクトルへと変換され、ベクトルの距離から類似性が計算されます。非常に高速ですが、光学異性体、配座を区別することはできません。

検索対象化合物(以下「クエリ化合物」とします)の立体構造を準備し、スクリーニング対 象化合物を用いてスクリーニング計算を行うことによって、数百万個のスクリーニング対象 化合物に対してクエリ化合物の探索を行うことができます。

手法の詳細については、文献を参照してください。

"A similarity search using molecular topological graphs", Y. Fukunishi, H. Nakamura, Journal of Biomedicine and Biotechnology, Volume 2009 (2009), Article ID 231780

2 システムのフェーズ構成

TGS 法スクリーニングシステムは下記二つのフェーズで構成されています。

(1) 固有値 DB 作成フェーズ

スクリーニング対象化合物の分子グラフ固有値を計算し、テキスト形式の固有値 DB に化 合物名と固有値を格納します。

本フェーズは一度行えば、スクリーニング対象化合物を変更・追加・削除しない限り再実 行する必要はありません。

(2) スクリーニングフェーズ

クエリ化合物の分子グラフ固有値とスクリーニング対象化合物の固有値を比較し、スクリ ーニング対象上位化合物を検索します。

図1. フェーズ構成

3 ディレクトリ構成

TGS 法スクリーニング環境は図2のようにTGS 法スクリーニング環境ディレクトリ以下、 4つのディレクトリと5つのサブディレクトリから構成されています。

 $\mathbf{5}$

TGSyymmdd/	TGS 法スクリーニング環境ディレクトリ
⊢database/	スクリーニング化合物ディレクトリ
	スクリーニング化合物グループディレクトリ
⊢src/	ソースディレクトリ
LTGS/	TGS 法プログラムディレクトリ
-bin/	実行ファイルディレクトリ
∟screening/	スクリーニング作業ディレクトリ
⊣eigenDB/	固有値 DB 作成ディレクトリ
-query/	クエリ化合物ディレクトリ
∟upper/	二次スクリーニングディレクトリ

図2. ディレクトリ構成

各ディレクトリの内容について説明します。

(1) スクリーニング化合物ディレクトリ(database)

スクリーニング対象化合物を保存します。

- (2) スクリーニング化合物グループディレクトリ(*)
- スクリーニング対象化合物グループを保存します。
- (3) ソースディレクトリ(src)

プログラムのソースを保存します。

(4) TGS 法プログラムディレクトリ(src/TGS)

本システムで使用するプログラムのソースを保存します。

(5)実行ファイルディレクトリ(bin)

本システムで使用する実行ファイルを保存します。

(6) スクリーニング作業ディレクトリ(screening)

スクリーニング計算のためのコマンドを実行するディレクトリです。スクリーニング計算 結果はすべてこのディレクトリの下に出力します。

(7) 固有値 DB 作成ディレクトリ(eigenDB)

スクリーニング対象化合物の分子グラフ固有値を計算し、スクリーニング対象化合物名と 固有値を保存します。

(8) クエリ化合物ディレクトリ(query)

クエリ化合物(電荷情報付き MOL2 形式)を保存します。

(9) 二次スクリーニングディレクトリ (upper)

二次スクリーニングの結果を保存します。

4 インストールと準備

TGS 法スクリーニング環境の準備手順を以下に示します。本システムの環境設定をするためには、GNU の FORTRAN コンパイラー(gfortran)、もしくは、intel の FORTRAN コンパイラ (ifort)が必要です。

(1) システムのインストール

本システムをインストールしたいディレクトリに移動します。"TGSyymmdd.tar.gz"をこの ディレクトリに移動させ、以下のコマンドを実行します。(yymmdd には年月日を示す数字が 入ります。)

% tar -xzvf TGSyymmdd.tar.gz % cd TGS

以下のコマンドは、どちらか一方のみを実行します。 % bin/install.sh (gfortranを使う場合) % bin/install.sh intel (ifortを使う場合)

install.sh コマンド実行後、"TGSyymmdd/bin/"に、"createDB"、 "selectTGS"の実行プログ ラムが配置されます。

(2) スクリーニング対象化合物の配置

"TGSyymmdd/database/"ディレクトリの下にスクリーニング対象化合物(mol2 形式)を配置 します。サンプルとして、"lig_sample/"ディレクトリが用意されています。実際に、使用 するためには、このディレクトリを削除して、スクリーニング対象化合物を含めたディレク トリを用意してください。

5 テストプログラムの実行

サンプルデータを用いたテスト実行用プログラムを用意しています。このプログラムを実 行することによって、インストールがうまくいっているか、結果ファイルが出力されるか等 を確認できます。以下のプログラムで、テストプログラムを実行します。

% bin/test_TGS.sh

TGS 法スクリーニング計算は以下の手順で実行します。

(1) クエリ化合物のデータ準備

"TGSyymmdd/screening/query/"ディレクトリにクエリ化合物(電荷情報付き MOL2 形式)を 配置します。ファイル名は"query.mol2"とします。

(2) スクリーニング対象化合物の固有値 DB 作成

"TGSyymmdd/screening/"ディレクトリで、以下のコマンドを実行します。 (カレントディレクトリが"TGS"の場合)

% cd screening

% ../bin/createDB.sh

実行すると、"TGS/screening/eigenDB/"ディレクトリにスクリーニング対象化合物の固有 値 DB が以下の形式で作成されます。

c001/0000014-01.mol2 14							18.524		
-0.372	-0.391	-0.445	-0.504	-0.559	-0.695	-0.880	-1.099	-1.288	-1.674
-1.914	-3.193	-5.510	2.164	1.943	1.596	1.364	1.206	1.003	0.483
0.375	0.112	-0.180	-0.353	-0.612	-0.949	-1.154			

図3. 固有値DBファイル例

(3)1次スクリーニングの実行

"TGSyymmdd/screening/"ディレクトリで、以下のコマンドを実行します。

% ../bin/1stSelect.sh

実行すると、スクリーニング対象化合物の上位 50 化合物の固有値 DB が "TGSyymmdd/screening/*/eigen.db"に作成されます。

c001/0112483-01.mol2 22 3								34. 794	
-0.377	-0.388	-0.399	-0.409	-0.415	-0.420	-0.611	-0.622	-0.745	-0.769
-0.937	-0.961	-1.006	-1.134	-1.598	-1.832	-1.884	-2.208	-2.335	-5.154
-10.589	2.421	2.141	2.027	1.760	1.473	1.370	1.355	1.198	0.972
0.763	0.523	0.522	0.302	0.206	-0.055	-0.281	-0.717	-0.807	-0.831
-0.856	-1.143	-1.343							

図4.1次スクリーニング結果ファイル例

(4)2次スクリーニングの実行

"TGSyymmdd/screening/"ディレクトリで、以下のコマンドを実行します。

% ../bin/2ndSelect.sh

実行すると、スクリーニング対象化合物の上位 1000 化合物の TGS スコアファイルが "TGSyymmdd/screening/upper/top.list"に作成されます。

10	c003/0401987-01.mol2	0. 0000004105	
9	c082/2368156-01.mo12	0.0000004058	
8	c035/2368156-02.mo12	0.0000004058	
7	c017/1202868-01.mol2	0.0000004023	
6	c005/1202868-02.mo12	0.0000004023	
5	c098/1484094-01.mol2	0.000003463	
4	c043/2332762-01.mo12	0.0000003463	
3	c081/3003480-01.mo12	0.0000002513	
2	c027/2842248-01.mo12	0. 0000002398	
1	c001/3336907-01.mol2	0. 000000000	

図 5.2 次スクリーニング結果ファイル例(上位 10 化合物)

左から順位、化合物名、スコアが記載されています。スコアは類似性が高くなると小さい 値を取り、同一化合物の場合は 0.0 の値となります。

7 サンプルデータを使った実行例

以下の手順でサンプルデータを用いて動作確認を行うことができます。サンプルの実行に は上記手順の1.4-(2)までの準備が必要です。スクリーニング対象化合物として

"TGSyymmdd/database/lig_sample/"ディレクトリに 296 化合物データを配置しています。また、"TGSyymmdd/screening/query"ディレクトリにクエリ化合物データの"query.mol2"を配置しています。

(1) スクリーニング対象化合物の固有値 DB 作成

"TGSyymmdd/screening/"ディレクトリで、以下のコマンドを実行します。

% ../bin/createDB.sh

(2)1次スクリーニングの実行"TGSyymmdd/screening/"ディレクトリで、以下のコマンドを実行します。

% ../bin/1stSelect.sh

(3)2 次スクリーニングの実行

"TGSyymmdd/screening/"ディレクトリで、以下のコマンドを実行します。

% ../bin/2ndSelect.sh

実行後、スクリーニング対象化合物の上位 50 化合物の TGS スコアファイルが "TGSyymmdd/screening/upper/top.list"に作成されます。

以上

10